De-Integrating Integrated Circuit Preamps

Less Delivers More?

Les Tyler, President, THAT Corporation

1

THAT Corporation

De-integrating Integrated Circuit Preamps Rev 1.4 Copyright © 2014, THAT Corporation

Today's Topics

- Where we've been, and where we're going
 - The old to the "new" topology
- Optimizing this new topology
 - Noise
 - Bandwidth
 - Gain control, taper, & dc offset
 - Output configuration
- Wrap-up

Out with the Old ... In with the New

Some historical perspective...

De-integrating Integrated Circuit Preamps Rev 1.4 Copyright © 2014, THAT Corporation

In the Beginning (for IC Preamps)

- Solid State Music
 - Ron Dow
 - Dan Parks
- SSM 2011 (~1982) – Integrated preamp
 - External feedback
- SSM2015 (~1983)
 - Integrated preamp
 - One external resistor controls gain: R_G

THAT Corporation

4

"Standard" IC Preamp Configuration

5

- Differential input
- Single-ended output
- Current feedback
- Single resistor controls gain – R_G

THAT Corporation

• Minimum gain: OdB – Requires infinite R_G

Many Followed In SSM's Footsteps

- SSM2016 (1986)
 - Derek Bowers' design
- SSM2017 (1989)
 - By this time, SSM was part of Analog Devices
- SSM2019 (2003)
 Derek Bowers (at ADI)
- TI INA163 (~2000) - INA217 (2002)
 - INAZI7 (2002)
- THAT 1510 (2004)
- THAT1512 (2004)
 - External R_G
 - Diff-amp gain: -6dB
 - Credit: Cal Perkins (at Mackie)

Not considered: AD524 (1982)

- Also included internal R_A & R_B, as well as choice of (internal) R_G
- Scott Wurcer's design
- Noise too high for a mic preamp (~5nV/√Hz)

THAT Corporation

6

Benefits of "Standard" Topology

- Wide bandwidth at high gain due to current, not voltage feedback
- Can be very quiet at high gains

 Many reach 1nV/√Hz voltage noise
- Easy to control gain with single R_G
- Integrated approach allows wide input dynamic range
 - See G. Hebert's presentation at the 2010 US AES convention

Detriments of "Standard" Topology

- Feedback network adds noise at low gains
 - Resistor self-noise
 - Current noise in R_G pins drawn across the feedback network's impedance
- Maximum gain is affected by pot's effective end-resistance
- Smooth taper is hard to achieve – Depends on R_G vs. R_A & R_B
- Must convert output from single-ended to differential to drive A/D converters

Let's De-Integrate the Topology

9

• Start with the "standard" IC

 Remove the output diff amp

Let's De-Integrate the Topology

 Remove internal R_A & R_B

 Take away the external R_G

What Does That Leave?

- Uncommitted
 - Completely configurable
- Differential In

THAT Corporation

- Differential Out

 OdB common-mode gain
- Current Feedback
- Low Voltage Noise
- THAT's the 1570 & 1583

The 1570/1583 "Uncommitted" Topology Makes Optimization Easy

- Noise vs. gain
- Bandwidth vs. gain
- Pot end resistance
- Gain vs. pot rotation
- Output amp performance
 - Noise
 - CMRR

Optimization Details

Noise

Bandwidth Gain control, taper & DC offset Output & Common-Mode Rejection

Noise Model for 1570/1583-Type Preamp

- Voltage (e_n) & Current (i_n) noise flows in each input pin
- e_n is amplified by gain
 0dB at minimum gain
 +60dB at 60dB gain
- i_n creates a noise voltage based on the impedance it flows through
 - Then amplified by gain
- Sources are uncorrelated

 Add in RMS fashion (root of the sum of the squares)

Noise Model for 1570/1583-Type Preamp

- e_{nRG} can be lumped into the e_{nIN+} and e_{nIN-} sources
- Contributions of i_{nIN+} & i_{nIN-} depend on source impedance at In+ & In-= (R₃+R₄+R₅)||(R₁+R₂)
- Contribution of i_{nRG} depends on feedback network impedance
 - $= (R_A + R_B) || R_G$
 - Current times impedance generates the voltage
- Because gain varies with R_A, R_B & R_G, relative contribution of each source depends on gain

THAT Corporation

1570/1583 Noise At High Gains (60dB shown)

- R_G is small, so i_{nR_G} contribution is small
- R_s is small, so the i_{nIN+} & i_{nIN-} contributions are small
 - But, if R_s is large (e.g., open inputs), i_{nIN} contributions can be significant
- e_{nIN+} & e_{nIN-} dominate, along with the selfnoise of R_s

High-gain noise depends more on IC characteristics and source impedance than anything else

THAT Corporation

De-integrating Integrated Circuit Preamps Rev 1.4 Copyright © 2014, THAT Corporation

1570/1583 Noise At Low Gains (0dB shown)

- e_{nIN+} & e_{nIN-} are small, along with the self-noise of R_s
- R_s is small, so the i_{IN+} & i_{IN-} contributions are small
- R_G is open, so the two i_{nR_G} currents flow through R_A & R_B
 - i_{nRG} currents dominate the noise floor
- To reduce noise at low gains, reduce R_A & R_B

Low-gain noise depends more on IC characteristics and feedback $(R_A \& R_B)$ impedance than anything else

THAT Corporation

De-integrating Integrated Circuit Preamps Rev 1.4 Copyright © 2014, THAT Corporation

1510 (Front End) Noise At High Gains (60dB Shown)

- R_G is small, so i_{nR_G} contribution is small
- R_s is small, so the i_{nIN+} & i_{nIN-} contributions are small
 - As with 1570, if R_s is large (e.g., open inputs), i_{nIN} contributions can be significant
- e_{nIN+} & e_{nIN-} dominate, along with the selfnoise of R_s

High-gain noise depends more on IC characteristics and source impedance than anything else

THAT Corporation

1510 (Front End) Noise At Low Gains (0dB Shown)

- e_{nIN+} & e_{nIN-} are small, along with the self-noise of R_s
- R_s is small, so the i_{nIN+} & i_{nIN-} contributions are small
- R_G is open, so i_{nRG1} flows through R_A, & i_{nRG2} flows through R_B
 - i_{nRG} currents dominate the noise floor
- Since R_A & R_B are fixed (internal), designers don't have freedom to affect this noise source

Noise at low gains depends only on IC characteristics: no flexibility with the "standard" topology

Controlling Noise: "Standard" vs. "New" Topology

- High-gain noise is same (1nV/√Hz) across 1510, 1512, & 1570
- Low-gain noise can be controlled in new topology, but not in standard topology
 - Requires the designer to supply R_A & R_B

1570's OdB gain noise is~9dB lower compared to 1510,~5dB lower compared to 1512

Controlling Noise: "Standard" vs. "New" Topology

- 1583 high-gain noise (1.9 nV/√Hz, or
 5.6dB) is higher than 1510, 1512, & 1570
- But, low-gain noise for the 1583 is almost as low as the 1512
- New topology preserves better lowgain noise, even with a higher-noise part

1583's 0dB gain noise is ~3dB lower than 1510 ~1.4dB higher than 1512

Optimization Details

Noise

Bandwidth

Gain control, taper & DC offset Output & Common-Mode Rejection

Optimizing Bandwidth Vs. Gain

- Bandwidth is determined by amplifier design and feedback resistor ($R_A \& R_B$)
- In 1510/12, you're limited to $R_A = R_B = 5k\Omega$
- In 1570 & 1583, you can vary R_A & R_B
 - Lower values => higher bandwidth
 - Minimum value is $\mathbf{Z}\mathbf{k}\Omega$

Gain (dB)	0	6	10	20	30	40	50	60	
Part									
1510	10.39	10.22	10.14	9.95	9.48	8.11	5.25	2.28	MHz
1512	11.95	11.84	11.65	11.15	9.76	6.66	3.04	1.07	MHz
1570 (2kΩ)	16.78	16.78	15.65	12.71	7.83	3.65	1.38	0.46	MHz
1570 (5k Ω)	4.19	4.19	4.19	3.91	3.41	2.41	1.12	0.43	MHz
1570 (10kΩ)	1.93	1.91	1.91	1.86	1.72	1.39	0.87	0.40	MHz
1583 (2kΩ)	13.97	13.00	12.01	8.73	4.33	1.69	0.59	0.19	MHz
1583 (5kΩ)	3.92	3.60	3.40	2.95	2.20	1.24	0.52	0.19	MHz
1583 (10kΩ)	1.56	1.50	1.47	1.38	1.19	0.84	0.44	0.17	MHz

THAT Corporation

Optimization Details

Noise Bandwidth Gain control, taper & DC offset Output & Common-Mode Rejection

Practical Considerations for R_A & R_B

- R_G is determined by maximum gain and R_A, R_B values
- To minimize output (differential) offset with gain, use C_G
- C_G works against R_G to determine LF cutoff (f₀)

 Small R_G and low f₀ means big C_G

THAT Corporation

Varying Gain in the "Standard" Circuit

- R_G varies to set gain
- Max gain when R_{GV} is maximum
- Min gain when R_{GV} is minimum
- Highest lowfrequency cutoff occurs at max gain
- C_G depends on desired LF cutoff and R_{GF} value

 C_{G} =3300 μ f, R_{G} =10 Ω , f_{o} = 4.43Hz

Practical Considerations for Varying Gain in the "Standard Circuit"

- Effective end resistance in R_{GV} limits max gain

 - Reduce R_{GF} to offset
 Variation in effective end resistance will alter max gain
- Pots used by APB **Dynasonics** have $2 \sim 3\Omega$ (measured) end resistance
- Thanks to John Petrucelli for samples!
 - Check your spec sheet for your tolerances ...

THAT Corporation

Practical Considerations for Varying Gain in the "New" Circuit

- The conventional circuit is shown at right
- To minimize low-gain noise, select $R_A \& R_B$ as low as possible – For 1570, that's $2k\Omega$

 - For 1583, that's $??\Omega$
- For 60dB gain, $R_{GF} = 4\Omega$
- End resistance may be a significant fraction of R_{GE}
- To maintain < 5Hz cutoff, **C_G > 7300**μ**f**
 - That's a big, expensive cap
 - Is < 5Hz cutoff a good idea at 60dB gain?

THAT Corporation

Consider a Dual-Element Pot to vary R_G, R_A & R_B **Simultaneously**

- Using a dual-element pot allows R_A & R_B to vary in addition to R_G
 - Lowers R_A & R_B at min gain, but raises them at max gain
- This allows smaller C_G for the same cutoff
 - In circuit shown
 - f_o ≈ 5.5Hz
 - 60dB gain noise is still very low: 1.18nV/√Hz (-129.1dBu with 150Ω source)

Pot Taper

- Measured taper of "5% reverse log" taper pots (thanks to APB)
- Actually two linear sections with different resistances in each section
- What curve of gain vs. rotation will this produce?

Gain vs. Rotation Compared: Single and Dual-Element Circuits

- Theoretical "ideal" curve shown in black
- Single-element pot (circuit of slide 26) results in red curve
- Dual-element pot (circuit of slide 29) results in blue curve
- Dual-element pot trajectory is much closer to "ideal"

Optimization Details

Noise Bandwidth Gain control, taper & DC offset Output & Common-Mode Rejection

Single-Ended Output Stages

- The 1570/1583 topology is differential in, differential out
 - Common-mode gain is always unity (0dB)
 - Differential gain varies with R_G, R_A, & R_B (0~>60dB)
 - CMRR is equal to differential gain
 - Output has a (negative) common-mode DC offset of 1 diode drop (~-0.6V)
- To provide CMR at low gains, add a differential amplifier after the 1570/1583
- Choose carefully to avoid adding noise and limiting bandwidth
 - 1510/1512 includes a pretty quiet, wide-band amp
 - 1570/1583 allows designers flexibility in choosing this amplifier for even greater performance
 - Circuit at right (w/ 2114) compromises low-gain noise floor by only ~2.6 dB (for the 1570) and ~0.14 dB (for the 1583)

Differential Output Stages

- In many cases (e.g., driving ADC), differential outputs are needed
- But, many designers want to remove common-mode signals
- Simple circuit (top, using 1286) has great common-mode rejection, fair noise performance
- More complex circuit (bottom, after Birt) maintains very low differential noise, but commonmode rejection depends on resistor matching

Differential Output Stages

- Variation of Birt circuit suggested for driving A/D converters
 - Includes attenuation suitable for ~2VRMS differential drive
- 1570/1583 differential output allows designers to spend on highperformance circuits & opamps when necessary, or save money when cost is more important than performance

Summing Up

Why choose the "new" topology?

36

De-integrating Integrated Circuit Preamps Rev 1.4 Copyright © 2014, THAT Corporation

Summary

- "New" 1570 & 1583 topology is a subset of the "standard" one
- Removing feedback resistors gives designers freedom to change their values
 - Optimize noise
 - Optimize bandwidth
 - Minimize blocking capacitor value while maintaining optimum noise performance
 - Optimize gain vs. rotation for analog control
- Removing output amp offers more flexibility
 - Naturally provides a differential output
 - Allows designer to set common-mode rejection
 - Optimize noise performance
- Less really is more!

Thank You to ...

- Joe Lemanski (THAT's Applications Engineering Manager), for many of the facts & figures contained herein
- Gary Hebert (THAT's Chief Technical Officer) & Fred Floru (THAT's Principal IC Design Engineer) for general review and much tutoring in R_A/R_B 's influence on noise
- Dave Lail (THAT's Art Director) for providing the drawings, and putting up with endless revisions
- Steve Green (THAT's Technical Marketing Manager) for many suggestions
- Dan Parks (now President of Cruz Tools, was the marketing guy at SSM), for help with early preamp chronology and credits.
- All of you in the audience for attending and supporting us!