De-Integrating Integrated Circuit Preamps

Less Delivers More?

Les Tyler, President, THAT Corporation
Today’s Topics

- Where we’ve been, and where we’re going
 - The old to the “new” topology

- Optimizing this new topology
 - Noise
 - Bandwidth
 - Gain control, taper, & dc offset
 - Output configuration

- Wrap-up
Out with the Old
... In with the New

Some historical perspective...
In the Beginning (for IC Preamps)

- **Solid State Music**
 - Ron Dow
 - Dan Parks
- **SSM 2011 (~1982)**
 - Integrated preamp
 - External feedback
- **SSM2015 (~1983)**
 - Integrated preamp
 - One external resistor controls gain: R_G
“Standard” IC Preamp Configuration

- Differential input
- Single-ended output
- Current feedback
- Single resistor controls gain
 - R_G
- Minimum gain: 0dB
 - Requires infinite R_G
Many Followed In SSM’s Footsteps

- **SSM2016 (1986)**
 - Derek Bowers’ design
- **SSM2017 (1989)**
 - By this time, SSM was part of Analog Devices
- **SSM2019 (2003)**
 - Derek Bowers (at ADI)
 - INA217 (2002)
- **THAT 1510 (2004)**
- **THAT1512 (2004)**
 - External R_G
 - Diff-amp gain: -6dB
 - Credit: Cal Perkins (at Mackie)
- **Not considered: AD524 (1982)**
 - Also included internal R_A & R_B, as well as choice of (internal) R_G
 - Scott Wurcer’s design
 - Noise too high for a mic preamp (~5nV/√Hz)
Benefits of “Standard” Topology

• Wide bandwidth at high gain due to current, not voltage feedback
• Can be very quiet at high gains
 – Many reach $1\text{nV/}\sqrt{\text{Hz}}$ voltage noise
• Easy to control gain with single R_G
• Integrated approach allows wide input dynamic range
 – See G. Hebert’s presentation at the 2010 US AES convention
Detriments of “Standard” Topology

• Feedback network adds noise at low gains
 – Resistor self-noise
 – Current noise in R_G pins drawn across the feedback network’s impedance

• Maximum gain is affected by pot’s effective end-resistance

• Smooth taper is hard to achieve
 – Depends on R_G vs. R_A & R_B

• Must convert output from single-ended to differential to drive A/D converters
Let’s De-Integrate the Topology

• Start with the “standard” IC

• Remove the output diff amp
Let’s De-Integrate the Topology

• Remove internal R_A & R_B

• Take away the external R_G
What Does That Leave?

• Uncommitted
 – Completely configurable
• Differential In
• Differential Out
 – 0dB common-mode gain
• Current Feedback
• Low Voltage Noise
• THAT’s the 1570 & 1583
The 1570/1583 “Uncommitted” Topology Makes Optimization Easy

• Noise vs. gain
• Bandwidth vs. gain
• Pot end resistance
• Gain vs. pot rotation
• Output amp performance
 – Noise
 – CMRR
Optimization Details

- Noise
- Bandwidth
- Gain control, taper & DC offset
- Output & Common-Mode Rejection
Noise Model for 1570/1583-Type Preamp

- Voltage \(e_n\) & Current \(i_n\) noise flows in each input pin
- \(e_n\) is amplified by gain
 - 0dB at minimum gain
 - +60dB at 60dB gain
- \(i_n\) creates a noise voltage based on the impedance it flows through
 - Then amplified by gain
- Sources are uncorrelated
 - Add in RMS fashion (root of the sum of the squares)
Noise Model for 1570/1583-Type Preamp

- e_{nRG} can be lumped into the e_{nIN+} and e_{nIN-} sources
- Contributions of i_{nIN+} & i_{nIN-} depend on source impedance at $In+$ & $In-$
 $= (R_3+R_4+R_S) \parallel (R_1+R_2)$
- Contribution of i_{nRG} depends on feedback network impedance
 $= (R_A + R_B) \parallel R_G$
 - Current times impedance generates the voltage
- Because gain varies with R_A, R_B & R_G, relative contribution of each source depends on gain
1570/1583 Noise At High Gains
(60dB shown)

- R_G is small, so i_{nR_G} contribution is small
- R_S is small, so the i_{nIN+} & i_{nIN-} contributions are small
 - But, if R_S is large (e.g., open inputs), i_{nIN} contributions can be significant
- e_{nIN+} & e_{nIN-} dominate, along with the self-noise of R_S

High-gain noise depends more on IC characteristics and source impedance than anything else
1570/1583 Noise At Low Gains (0dB shown)

- $e_{n IN+}$ & $e_{n IN-}$ are small, along with the self-noise of R_S
- R_S is small, so the i_{IN+} & i_{IN-} contributions are small
- R_G is open, so the two i_{nRG} currents flow through R_A & R_B
 - i_{nRG} currents dominate the noise floor
- To reduce noise at low gains, reduce R_A & R_B

Low-gain noise depends more on IC characteristics and feedback (R_A & R_B) impedance than anything else
1510 (Front End) Noise At High Gains (60dB Shown)

- R_G is small, so i_{nR_G} contribution is small
- R_S is small, so the i_{nIN+} & i_{nIN-} contributions are small
 - As with 1570, if R_S is large (e.g., open inputs), i_{nIN} contributions can be significant
- e_{nIN+} & e_{nIN-} dominate, along with the self-noise of R_S

High-gain noise depends more on IC characteristics and source impedance than anything else
1510 (Front End) Noise At Low Gains
(0dB Shown)

• e_{nIN^+} & e_{nIN^-} are small, along with the self-noise of R_S
• R_S is small, so the i_{nIN^+} & i_{nIN^-} contributions are small
• R_G is open, so i_{nRG1} flows through R_A, & i_{nRG2} flows through R_B
 - i_{nRG} currents dominate the noise floor
• Since R_A & R_B are fixed (internal), designers don’t have freedom to affect this noise source

Noise at low gains depends only on IC characteristics: no flexibility with the “standard” topology
Controlling Noise: “Standard” vs. “New” Topology

• High-gain noise is same (1nV/√Hz) across 1510, 1512, & 1570

• Low-gain noise can be controlled in new topology, but not in standard topology
 - Requires the designer to supply R_A & R_B

1570’s 0dB gain noise is
-9dB lower compared to 1510,
-5dB lower compared to 1512
Controlling Noise: “Standard” vs. “New” Topology

• 1583 high-gain noise (1.9 nV/√Hz, or 5.6dB) is higher than 1510, 1512, & 1570

• But, low-gain noise for the 1583 is almost as low as the 1512

• New topology preserves better low-gain noise, even with a higher-noise part

1583’s 0dB gain noise is
~3dB lower than 1510
~1.4dB higher than 1512
Optimization Details

- Noise
- Bandwidth
- Gain control, taper & DC offset
- Output & Common-Mode Rejection
Optimizing Bandwidth Vs. Gain

- Bandwidth is determined by amplifier design and feedback resistor \((R_A \& R_B)\)
- In 1510/12, you’re limited to \(R_A = R_B = 5k\Omega\)
- In 1570 & 1583, you can vary \(R_A \& R_B\)
 - Lower values \(\Rightarrow\) higher bandwidth
 - Minimum value is 2k\Omega

<table>
<thead>
<tr>
<th>Part</th>
<th>Gain (dB)</th>
<th>0</th>
<th>6</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1510</td>
<td></td>
<td>10.39</td>
<td>10.22</td>
<td>10.14</td>
<td>9.95</td>
<td>9.48</td>
<td>8.11</td>
<td>5.25</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>1512</td>
<td></td>
<td>11.95</td>
<td>11.84</td>
<td>11.65</td>
<td>11.15</td>
<td>9.76</td>
<td>6.66</td>
<td>3.04</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>1570 (2kΩ)</td>
<td></td>
<td>16.78</td>
<td>16.78</td>
<td>15.65</td>
<td>12.71</td>
<td>7.83</td>
<td>3.65</td>
<td>1.38</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>1570 (5kΩ)</td>
<td></td>
<td>4.19</td>
<td>4.19</td>
<td>4.19</td>
<td>3.91</td>
<td>3.41</td>
<td>2.41</td>
<td>1.12</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>1570 (10kΩ)</td>
<td></td>
<td>1.93</td>
<td>1.91</td>
<td>1.91</td>
<td>1.86</td>
<td>1.72</td>
<td>1.39</td>
<td>0.87</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>1583 (2kΩ)</td>
<td></td>
<td>13.97</td>
<td>13.00</td>
<td>12.01</td>
<td>8.73</td>
<td>4.33</td>
<td>1.69</td>
<td>0.59</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>1583 (5kΩ)</td>
<td></td>
<td>3.92</td>
<td>3.60</td>
<td>3.40</td>
<td>2.95</td>
<td>2.20</td>
<td>1.24</td>
<td>0.52</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>1583 (10kΩ)</td>
<td></td>
<td>1.56</td>
<td>1.50</td>
<td>1.47</td>
<td>1.38</td>
<td>1.19</td>
<td>0.84</td>
<td>0.44</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>
Optimization Details

- Noise
- Bandwidth
- Gain control, taper & DC offset
- Output & Common-Mode Rejection
Practical Considerations for R_A & R_B

- R_G is determined by maximum gain and R_A, R_B values
- To minimize output (differential) offset with gain, use C_G
- C_G works against R_G to determine LF cutoff (f_0)
 - Small R_G and low f_0 means big C_G
Varying Gain in the “Standard” Circuit

- R_G varies to set gain
- Max gain when R_{GV} is maximum
- Min gain when R_{GV} is minimum
- Highest low-frequency cutoff occurs at max gain
- C_G depends on desired LF cutoff and R_{GF} value

$C_G = 3300 \mu f$, $R_G = 10 \Omega$, $f_o = 4.43 Hz$
Practical Considerations for Varying Gain in the “Standard Circuit”

- Effective end resistance in R_{GV} limits max gain
 - Reduce R_{GF} to offset
 - Variation in effective end resistance will alter max gain
- Pots used by APB Dynasonics have 2~3Ω (measured) end resistance
- Thanks to John Petrucelli for samples!
 - Check your spec sheet for your tolerances ...

Practical Considerations for Varying Gain in the “New” Circuit

- The conventional circuit is shown at right
- To minimize low-gain noise, select R_A & R_B as low as possible
 - For 1570, that’s 2kΩ
 - For 1583, that’s ??Ω
- For 60dB gain, $R_{GF} = 4\Omega$
- End resistance may be a significant fraction of R_{GF}
- To maintain < 5Hz cutoff, $C_G > 7300\mu f$
 - That’s a big, expensive cap
 - Is < 5Hz cutoff a good idea at 60dB gain?
Consider a Dual-Element Pot to vary R_G, R_A & R_B Simultaneously

- Using a dual-element pot allows R_A & R_B to vary in addition to R_G
 - Lowers R_A & R_B at min gain, but raises them at max gain
- This allows smaller C_G for the same cutoff
 - In circuit shown $f_0 \approx 5.5\text{Hz}$
 - 60dB gain noise is still very low: 1.18nV/$\sqrt{\text{Hz}}$ (-129.1dBu with 150Ω source)
Pot Taper

• Measured taper of “5% reverse log” taper pots (thanks to APB)
• Actually two linear sections with different resistances in each section
• What curve of gain vs. rotation will this produce?

![Graph showing resistance vs pot rotation]
Gain vs. Rotation Compared: Single and Dual-Element Circuits

- Theoretical “ideal” curve shown in black
- Single-element pot (circuit of slide 26) results in red curve
- Dual-element pot (circuit of slide 29) results in blue curve
- Dual-element pot trajectory is much closer to “ideal”
Optimization Details

- Noise
- Bandwidth
- Gain control, taper & DC offset
- Output & Common-Mode Rejection
Single-Ended Output Stages

- The 1570/1583 topology is differential in, differential out
 - Common-mode gain is always unity (0dB)
 - Differential gain varies with R_G, R_A, & R_B (0~>60dB)
 - CMRR is equal to differential gain
 - Output has a (negative) common-mode DC offset of 1 diode drop (~-0.6V)

- To provide CMR at low gains, add a differential amplifier after the 1570/1583

- Choose carefully to avoid adding noise and limiting bandwidth
 - 1510/1512 includes a pretty quiet, wide-band amp
 - 1570/1583 allows designers flexibility in choosing this amplifier for even greater performance
 - Circuit at right (w/ 2114) compromises low-gain noise floor by only ~2.6 dB (for the 1570) and ~0.14 dB (for the 1583)
Differential Output Stages

- In many cases (e.g., driving ADC), differential outputs are needed
- But, many designers want to remove common-mode signals
- Simple circuit (top, using 1286) has great common-mode rejection, fair noise performance
- More complex circuit (bottom, after Birt) maintains very low differential noise, but common-mode rejection depends on resistor matching
Differential Output Stages

- Variation of Birt circuit suggested for driving A/D converters
 - Includes attenuation suitable for ~2VRMS differential drive
- 1570/1583 differential output allows designers to spend on high-performance circuits & opamps when necessary, or save money when cost is more important than performance
Summing Up

Why choose the “new” topology?
Summary

• “New” 1570 & 1583 topology is a subset of the “standard” one

• Removing feedback resistors gives designers freedom to change their values
 – Optimize noise
 – Optimize bandwidth
 – Minimize blocking capacitor value while maintaining optimum noise performance
 – Optimize gain vs. rotation for analog control

• Removing output amp offers more flexibility
 – Naturally provides a differential output
 – Allows designer to set common-mode rejection
 – Optimize noise noise performance

• Less really is more!
Thank You to ...

• Joe Lemanski (THAT’s Applications Engineering Manager), for many of the facts & figures contained herein

• Gary Hebert (THAT’s Chief Technical Officer) & Fred Floru (THAT’s Principal IC Design Engineer) for general review and much tutoring in R_A/R_B’s influence on noise

• Dave Lail (THAT’s Art Director) for providing the drawings, and putting up with endless revisions

• Steve Green (THAT’s Technical Marketing Manager) for many suggestions

• Dan Parks (now President of Cruz Tools, was the marketing guy at SSM), for help with early preamp chronology and credits.

• All of you in the audience for attending and supporting us!