Analog Secrets Your Mother Never Told You

Les Tyler, Gary Hebert, Ros Bortoni, Bob Moses

123rd AES Convention
New York, October 2007
Seminar Outline

- New ICs
- Microphone preamplifiers
- Log math
- Balanced outputs
- Q & A
- Door prizes!
Department: Engineering

Chapter: New ICs

Name: Bob Moses

Address: 123rd AES Convention
 New York, October 2007
New ICs

- **THAT 2162 Dual VCA**
 - Pre-trimmed
 - Current-in, current-out
 - VCAs are completely independent
 - QSOP-16 package
 - $2.98 (1,000’s) -- $1.49 per channel
 - Samples available now
 - Production quantities this quarter (4Q07)
New ICs

- **THAT 1280-Series**
 - Dual Balanced Line Receiver
 - Three gain versions
 - THAT 1280: 0dB (pin compatible w/ TI INA2134)
 - THAT 1283: ±3dB
 - THAT 1286: ±6dB (pin compatible w/ TI INA2137)
 - SO-14 package
 - $1.98 (1,000's) -- $0.99/channel
 - Samples available now
 - Production quantities this quarter (4Q07)
Department Engineering

Chapter Mic Preamps

Name Rosalfonso “Ros” Bortoni

Address 123rd AES Convention
 New York, October 2007
Mic Preamp - Highlights

- One chip solution
 - Wide gain range
 - High bandwidth
 - Low noise
 - Low power

- Two gain options
 - 1510: $G = 1 + 10k/Rg$ (0dB min)
 - 1512: $G = 0.5 + 5k/Rg$ (-6dB min)
 - Accepts +24dBu @ +/- 15V rails
Continuously Adjustable Gain Mic Preamp

- Uses potentiometer (R3) to control gain
- 60dB+ gain range
- Output dc offset changes with gain
- Will thump if changed quickly
Cure Thump with a Capacitor

- C_1 avoids output dc variations
- Sets dc gain to 1
- Avoids thump
- Disadvantages
 - + PCB Area
 - Antenna (RFI)
 - Cost of cap
Switched Gain Mic Preamp

- Uses switches to control gain
- 60dB+ gain range
- Output dc offset still changes with gain
- Will click when gain is changed
Cure Click with a Capacitor

• **C1 avoids output dc variations**
• **Sets dc gain to 1**
• **Avoids click**
• **Disadvantages**
 - Same as with pot

```
Cure Click with a Capacitor

• C1 avoids output dc variations
• Sets dc gain to 1
• Avoids click
• Disadvantages
  - Same as with pot
```

![Diagram of the circuit](image)
Mic Preamps – Choosing the Cap

- First, choose minimum R_g based on max gain
- Second, choose highest allowed LF cutoff
- Then: $C_g = 1 / (2\pi f R_g)$
- For max gain = +60dB & LF cutoff = 5Hz
 - For 1510: $R_g = 10\,\Omega$, $C_g \approx 3300\mu F$
 - For 1512: $R_g = 5\,\Omega$, $C_g \approx 6800\mu F$
- For max gain = +40dB & LF cutoff = 5Hz
 - For 1510: $R_g = 100\,\Omega$, $C_g \approx 330\mu F$
 - For 1512: $R_g = 50\,\Omega$, $C_g \approx 680\mu F$
- Etc.
Mic Preamp with Output Servo

- Reduces steady-state output offset
- Doesn’t fix transient offset
 - Likely to click
 - Adds PCB area
 - Increases cost
Mic Preamp with Input Servo

- Reduces steady-state output offset
- Reduces transient offset, too

- Requires high-performance opamp
 - Low input offset voltage
 - Low input bias current
Recommended Circuit for Digital Control

- Use C-MOS switches to change Rg
- Splitting Rg to minimize charge injection (pops)

• 1512 lowers charge injection pop by 6dB
Unbalanced Capacitance at Rg1, Rg2

- Lowers CMRR @ HF
- Caused by
 - PCB stray capacitances
 - Different loading on Rg1 vs Rg2
- Effect is surprisingly large
Common-Mode Gain vs. Freq., 1~10pf Imbalance
Common-Mode Gain vs. Capacitive Imbalance, 20kHz
Department: Engineering
Chapter: VCA/RMS & Log Math
Name: Les Tyler
Address: 123rd AES Convention
 New York, October 2007
THAT VCAs, RMS, & Log Math

- (Very) basic Voltage Controlled Amplifiers (VCAs)
- (Very) basic RMS Detectors
- (Very) basic Analog Engines®
- Cool “log math” simplifies designs using the above
Blackmer® VCAs Offer “Deci-Linear” Control

- Linear control voltage causes Exponential gain (direct dB control)
- Typically -100~+40dB
- ~ ±6mV per dB gain
- Positive- & negative-sense control ports
- Current in & out
- Singles: 2180/1-series
 - SO-8 & SIP-8
- Dual: 2162
 - QSOP-16
THAT Level Detectors Are “Deci-Linear”

- Logarithmic output Voltage (direct dB) reading
- Good linearity over >60dB
- Current in, voltage out
- RMS-responding
- Time response mimics ear’s time-weighting
 - Less sensitive to phase shifts than peak or average.
- Single: 2252
 - SIP-8
- SO-packages
 - See Analog Engines®

THAT Corporation
Analog Engines®: VCAs + RMS Detector

- Compressor/limiter on a single chip
- Versatile 4320/4301
 - Includes several opamps and other useful stuff
- Basic 4305/4315
 - Just VCA and RMS detector
- 4301/4305
 - High voltage (±15V)
- 4315/4320
 - Low voltage, low power (+5V, 1.6mA)
Analog Engines® Are Deci-Linear, Too

- VCAs offer Deci-Linear control law
 - Direct dB control of gain
- Detectors offer Deci-Linear output law
 - Direct dB reading of RMS level
- Makes designing complex dynamics processors easy
 - Compressors/Limiters
 - Expanders/Gates
- Feedforward possible
 - VCA control law matches RMS-detector output law
- Deci-Linear characteristic makes “log-math” useful for side chain design
- Easily produces repeatable, predictable results
Linear Math Approach

- VCA gain law: \[A_V = e^{\frac{-E_C}{2VT}} \]

- Detector output law: \[V_{OUT} = 2VT \ln(V_{inrms}) \]

- “Linear” math leads to exponentials & logs
- Combining these two theoretically predicts gain trajectory
- But, do you really want to deal with this math?
“Log Math” Approach

• Express signal levels as their dB levels
• Express all gains in dB

• VCA gain law: $A_{db} = -166.7E_c$
• Detector output law: $V_{OUT} = 0.006 \text{ dB}_{RMS}$

• “Log” math reduces the exponentials and logs to simple, linear relationships
• Much easier to deal with!
Feedforward Processors - Log Math

- We can combine the previous two equations, and get:

\[dB_{OUT} = dB_{IN} + \left[-166.7 \cdot (G \cdot 0.006 dB_{IN}) \right] = (1 - G) dB_{IN} \]

- Compression (Expansion) ratio is:

\[\frac{dB_{IN}}{dB_{OUT}} = \frac{1}{(1 - G)} \]

- Sign of gain determines compress or expand

- Lots of variations possible
 - Infinite compression
 - Negative compression
Feedback Processors - Log Math

- The VCA control voltage depends on the detector’s level reading and G:

\[E_C = G \cdot 0.006 \text{ dB}_{OUT} \]

- But, the output signal depends on the input and the VCA gain:

\[\text{dB}_{OUT} = \text{dB}_{IN} + [166.7 \cdot (G \cdot 0.006\text{dB}_{OUT})] = \text{dB}_{IN} - G\text{dB}_{OUT} \]

- Combining and rearranging, we can solve for the Compression (or Expansion) ratio:

\[\frac{\text{dB}_{IN}}{\text{dB}_{OUT}} = 1 + G \]

- Sign of gain G determines compress vs. expand

- Fewer variations are possible due to stability considerations
 - Infinite compression is unstable!
Adding Thresholds

• Change G based on detector’s output level
 - Half-wave rectifier
 - OA2/D1/D2
• Vary dc offset (R7) before rectifier
 - Changes the “active region” where detector’s output passes to the VCA control port
 - Corresponds to a dB threshold
Controlling Ratio and Static Gain

- Vary control path gain (R8)
 - Changes G (in the active region)
 - Controls compression/expansion ratio

- Vary dc offset (R12) after clamp circuit
 - Changes static gain
See THAT's app notes for more detail

• AN101a: details about “Log math” involved

• AN100a: side-chain circuit details
 - Compressor application

• Many others for more circuit ideas
Department: Engineering
Subject: Balanced Outputs
Name: Gary Hebert
Address: 123rd AES Convention
New York, October 2007
Balanced Floating Output Drivers

• Imitate some aspects of output transformers
• High common-mode output impedance (several kΩ)
• Low differential output impedance
• Feedback minimizes common-mode output current (I_{out+} = -I_{out-})
• Output appears across two output terminals
 - Whether or not one is grounded
Clipping Behavior

- Traditional designs can lose control over output current if clipped when one output is grounded
 - CM feedback is lost
 - Output current in grounded leg increases to current limit
 - Can lead to distorted crosstalk
- Outsmarts® CM feedback loop maintains control
 - No current limiting
 - Less sensitive PCB layouts
OutSmarts Demo Board - Block Diagram
Clipping Into Single-ended Loads

• THAT 1606/1646 Behavior

Note: \(f_{\text{IN}} = 1 \text{ kHz}, \ Z_{\text{LOAD}(+)} = 10 \text{ k}\Omega, \ Z_{\text{LOAD}(-)} = 0 \text{ \Omega} \)
Clipping Into Single-ended Loads

- SSM2142 Misbehavior

Note: $f_{IN} = 1\,kHz$, $Z_{LOAD(+)} = 10\,k\Omega$, $Z_{LOAD(-)} = 0\,\Omega$
Clipping Into Single-ended Loads

- DRV134/135 Misbehavior

Note: $f_{IN} = 1$ kHz, $Z_{LOAD(+) } = 10 \, k\Omega$, $Z_{LOAD(-) } = 0 \, \Omega$
CMRR Depends on Impedance Ratios

- Wheatstone Bridge
 - Models Balanced Driver/Receiver
- CMRR is high if ratios match
- CMRR degrades if $\frac{R_{cmo1}}{R_{cmo2}} \neq \frac{R_{cmi1}}{R_{cmi2}}$
- CMRR is unaffected by differential signal level
Signal Balance

• Signal Balance measures match of + and - output levels
 - Using a perfectly balanced load
• Signal Balance affects only headroom
• Might affect crosstalk in multipair cables
• Does not affect CMRR
Discrete Balanced Floating Output Driver

- R1, R11 deliberately increased (nominal 11kΩ)
 - Ensures stability
 - Lowers CM output impedance
Discrete Balanced Floating Output Driver

- R8 is typically trimmed for best signal balance
 - Compensates for resistor mismatches (e.g., R1/R11)
 - But this is not the best solution

Analog Secrets Your Mother Never Told You
123rd AES Convention, New York, October 6, 2007
© THAT Corporation
Signal Balance vs. Pot Rotation

- **SBR =** \(20 \log \left(\frac{V_{o+} + V_{o-}}{V_{in}} \right)\)
- Load is 18 kΩ per output
- Null occurs at about 11.5% pot rotation
CMRR vs. Pot Rotation

- Same 18 kΩ loads (perfectly matched)
- CMRR null occurs at about 80% pot rotation
- CMRR after trim is 10 dB worse than no trim at all
CMRR vs. Pot Rotation - 10 MegΩ Zin

- CMRR vs. Pot Rotation with 10 MegΩ CM loads
- With InGenius input this isn’t an issue
Signal Balance vs. Pot Rotation - 10 MΩ Zin

- However, Signal Balance is unchanged with 10 MegΩ loads
THAT Output Driver ICs

- Trimming is complex - let us do it for you
- 1646/06 include all required trims & adjustments
Department

Chapter

Name

Address

Engineering

Wrap Up

Bob Moses

123rd AES Convention
New York, October 2007
Conclusions

• Secret #1: new ICs from THAT!
• Secret #2: Mic Preamps need dc stability
 - Use capacitor in series with Rg
 - Output servo is of limited benefit
 - Input servo can work well, but is expensive
• Secret #3: For digital control, put analog switches inside split pairs of Rg
• Secret #4: Match stray loading on Rg pins
• Secret #5: Log math is easy and fun!
• Secret #6: Cross-coupled balanced outputs misbehave in some real world conditions
• Secret #7: OutSmarts® delivers optimal performance under tortuous conditions