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Attack and Release Time Constants in RMS-Based
Feedback Compressors

FRED FLORU, AES Member

THAT Corporation, Marlborough, Massachusetts, [JSA

The goal of the paper is to develop mathematical models for feedback
and feedforward compressors. A couple of possible configurations are
explored: linear-output RMS detector with linearly-controlled VCA
(linear-domain compressor) and logarithmic-output RMS detector with
exponentially-controlled VCA (log-domain compressor). It is shown that
the transfer functions of both configurations are equivalent. A formula for
transforming the compression ratio of a log-domain compressor to that of a
linear-domain compressor is derived. The differences between feedforward
and feedback compressor configurations, with regard to time constants and
performance, are considered.

0 Introduction

The core of any compressor consists of two elements: a level detector and an amplifier with
variable gain. The output of the level detector is a dc current or voltage that is a representation
of the ac input signal. The detector could be a peak detector, an average detector or a true Root
Mean Square (RMS) detector. The peak detector is usually low cost and can be fast. The signal
detected is the maximum level of the signal. The average detector computes the mean level of the
signal. It is rather inexpensive and the time constants are comparable to the RMS detector ones.
The true RMS detector is the only detector that directly relates to the power of the signal,
independent of the signal waveform. The RMS value of an ac voltage or current is the equivalent
de voltage or current that generates the same amount of real power in a resistive load. If the
shape of the incoming signal is known, e.g., sine wave, square wave, then either the peak or the
average detector can be used to calculate the RMS level of the signal. Unfortunately, the
waveform of a music source can not be predicted. This is the reason why the peak and average
detector are not necessarily appropriate for audio applications. Any of the above detectors could
be implemented in digital domain as well. For instance, the ac signal can be digitized by an
analog to digital converter, or ADC, and the computation takes place in a digital signal processing
unit, DSP, or micro controller. Another way is to digitize the dc output of a true RMS detector
and use the microcontroller to control compression ratio. The compressors considered for this
paper are based on true RMS detectors.



The variable gain amplifier is usually a three port device: input, output and gain control. Any
of the ports could be voltage or current connections. The variable gain amplifier could be a
voltage divider with variable shunt impedance (bipolar or JFET transistor, opto-resistor), an
operational transconductance amplifier (OTA), a voltage controlled amplifier (VCA), a digitally
controlled attenuator, or a multiplier in a DSP. The voltage divider and shunt impedance solution
has the drawbacks of high distortion, limited dynamic range and unpredictable transfer function.
The OTA has the advantage of a defined transfer function and a rather better dynamic range. Yet,
the distortion performance of these devices is not appropriate for professional audio applications
[1]. A digitally controlled attenuator is more difficult to implement since it needs a digitized value
of the RMS level [5]. Another problem is that the attenuation steps are often large and the
compressor can not be controlled in-between steps. Digitally controlled attenuators are also
prone to zipper noise. The DSP based variable gain amplifier is essentially a multiplier and it
makes sense in the context of a DSP-based compressor. In this case the variable gain element is
linearly controlled. VCAs are the highest performance variable gain amplifiers [2] [3]. Recent
developments in voltage controlled amplifier [4] show the commitment of the IC manufacturers to
improving this popular device. The most popular VCAs have exponential gain control. The
advantage is that the exponential transfer function is linear in decibels. In order to use these
VCAs in compressor applications. the detector should preferably have a logarithmic output. In
other words, the dc output of the detector is a logarithmic representation of the ac input signal.

1 RMS detector

The theory of the RMS detector was described in a previous paper [6]. The RMS value, V.,
of an input signal vi,(t) is defined as:

7
Vims =1Ti_{2 Vll _J;O V,-z,,(t) - dt )

As stated above, the RMS detector can have a linear or logarithmic output. The block diagram
of each detector is shown in reference [6]. In a linear output detector, the input signal is squared,
then integrated over a finite time and eventually the square root is extracted The problem with
this approach is that the square operation needs a lot of dynamic range. For instance, to detect
professional audio signals that could be as high as +24 dBu over 80dB dynamic range, the peak
output voltage of the square block swings between 3.03 puV and 303 V. The dynamic range
required at the output of the square block is 160 dB ! In the digital domain this dynamic range
translates to 27 bit words. One way around this limitation is to compress the signal going into the
linear RMS detector. Then, the output of the linear RMS detector is multiplied by the
compression factor. The integrator is a first order low pass filter. The time constant of the
integrator determines the ripple as well as the transient response at the detector output.

The logarithmic RMS detector is more forgiving in terms of dynamic range of voltage
required. The input signal needs to be rectified because the logarithm function is defined only for
positive vaiues. Next step is to take the logarithm of the rectified signal. The square operation is
just a multiplication by a factor of two. Thus, the dynamic range required at the output of the
square block is reduced to 25.3 dB. The signal is integrated by a first order log filter described in



reference [7]. A limiting factor can be the amount of current available for the log integrator. The
current in the log filter diode is proportional to the square of the input current. Thus, the RMS
detector based on log filter requires a large dynamic range in current instead of voltage.

2 Compressor topologies

2.1 Linear-Domain Compressor
2.1.1 Feedforward

The block diagram of a linear-domain feedforward compressor is shown in Fig. 1 . The RMS
detector and VCA are linear devices. The input of the RMS detector is pre-scaled to a reference
level, V.. This voltage is also called reference level. At reference level, the output of the linear
RMS detector is one. The voltage at the gain control port Ge is applied to an internal math block.
The output voltage is the product of the input voltage multiplied by the gain control voltage. In
the case of a linear VCA, used in a compressor application, the transfer function is:

1
fGe)=5; @)

The VCA output and input voltage have the same polarity.

The output of the linear RMS detector is calculated in reference [6] as follows:

V/'ms(t) = [j‘%-' . (LI'/I-’(Q)Z . exp(%) < dt+ C] . CXp(—Z_{; 3)

where T is the time constant of the integrator and c is a constant without units.

]—

The RMS detector output, Vs, is applied to the gain control port Ge of the linear VCA.
Assume that the multiplier factor k is one. The function of k factor is explained later in this paper.
The transfer function of the feedforward compressor is calculated as follows:

VOH{(’)
V!.ll(t) .‘_ﬂ Vrms ) Vl"”'(t) (4)

Substituting V. from equation (3) into equation (4) the transfer function becomes:

w|—

Voul( ”I(t)
V,-,,(tt)) = [f T +expl(e) - dt+c]

2.1.2 Feedback

: eXP(z_{E) (5)

The block diagram of a linear-domain feedback compressor is shown in Fig. 2. The RMS
detector and VCA are also linear devices. The transfer function of the linearly controlled VCA is
according to equation (2). The detector input is the output voltage divided by reference level V. .
Equation (3) can not be applied directly, as in the case of the feedforward compressor, because
the output voltage is a function of the detector output, Vi, . Thus, it is necessary to go back one



step to the differential equation that describes the functionality of the linear RMS detector. From
reference [6], the differential equation of the linear RMS detector is calculated as follows:

V(;;n (’ ) aV);"ms(’ )
2= = o rms (t )

R ©

Assuming that the multiplier factor k is one, the output voltage can be calculated from
equation (4) as follows:

Vint)
V(mt(t) = m .

Substituting equation (7) into (6) and rearranging the terms, the differential equation can be
written as:

I/l)!l (’) aV;’ms(’)
2 = Vzms( ) rms(t) (3)
1%
Noting that:
ox 1 a2
x . E fomnd '5' . af (9)

Applying the above property to equation (8) and rearranging the terms, the latter can be
written as follows;

aVﬁl"S(’) 2 Vl“ (’) 2
+7 rms(t) = (10)

The algorithm for solving the above differential equation is described in references [6] and [8].
Following the same steps as in reference [6], we make the following notations:

W) = Vi)

(11)
u(t) = 234

Also, notice the following identity:

Z0 - explu()] = [F7+ 3 - 90| explu®) 2

Let’s multiply the left and right terms of equation (10) by exp(u(t)) and use identity (12). The
result follows:

L[(r) - exp(”)]- ;

. %‘ : eXp(%) (13)



Differential equation (13) can be solved by integrating both terms with respect to time:

W) = [52 M exp(&L) - dt+c]-exp(—%) (14)

and by substituting y(t) with its definition from (11), the output of the linear RMS detector,
Vs, has the following representation:

Voms0) = [ 12552 - exp(32) - i+ |

where c is a constant without units,

sl—

) exp(—ﬁ) (15)

Substituting equation (15) into (4), the transfer function of the feedback compressor can be
calculated as follows:

1
Vout(l) _ 2 Vm (I) 2:¢ (L)
Vuld ~ J< -exp(F) -di+c| - explz; (16)
Notice that the time constant of the RMS detector integrator is halved by the feedback.

2.2 L.og-Domain Compressor
2.2.1 Feedforward

The block diagram of a log-domain feedforward compressor is shown in Fig. 1. In this case,
the RMS detector is logarithmic and the VCA is exponential. The RMS detector input voltage is
pre-scaled to reference level V, . At reference level, the output of the logarithmic detector is zero.
An extra multiplier block is added between the output of the RMS detector and VCA gain control
port. Multiplier k defines the compression ratio, which is analyzed later in this paper. Notice
that factor k multiplies a logarithmic representation of the RMS detector input signal. A similar
multiplier block, in the linear-domain compressor, was not shown because it does not have a
direct and obvious correspondence with its counterpart in the log-domain compressor. In the
case of the exponentially controlled VCA, the transfer function at the control port is [9]:

Ge
AG.) = exp(— 7y (17)

where Vris the thermal voltage equal to 0.0259 V at 27° C.

In reference [9] the voltage applied to the gain control port is divided by two which represents
a square root operation. In real applications the square root operation in the logarithmic RMS
detector is transferred to the VCA. In the case of the log-domain compressor, it doesn’t matter
where the division by two is made. So, in order to be consistent with the description of the
linear-domain compressor, the square root operation is done in the RMS detector. The output of
the logarithmic RMS detector is calculated in reference [6] as follows:



Vims(£) = V” +Vr-ln \/j Yl -exp(s) - dt+c (18)

where T is the time constant of the log integrator [7] and ¢ is a constant without units,

The transfer function of the feedforward compressor is calculated as follows:

Voul(’) ke Vlms(t)
Tt =S Vime) = exp(- (19)

Substituting equation (18) into equation (19), the transfer function becomes:
VDHI(t) ,”
0 = exp| 5 — ke In [T exp($) - di+ o)
Rearranging the terms in above equation, the transfer function has the following form:
k
Vour(1) _ [ V,,,( ) ]_2 (kl
Vi) — J+- I exp(f)-dt+c| " exp(3z @

Notice that for k = 1, equation (21) has the same expression as the transfer function for the
linear-domain feedforward compressor.

2.2.2 Feedback

The block diagram of a log-domain feedback compressor is shown in Fig. 2. The RMS
detector is logarithmic and the VCA is exponentially controlled. The transfer function at the
control port of the exponentially controlled VCA is given by definition (17). As in the case of the
linear-domain feedback compressor, the input of the RMS detector is proportional to the output
voltage of the feedback compressor. The output voltage is calculated in equation (19) and is a
function of the VCA gain which is a function of the output of the logarithmic RMS detector.
Thus, the differential equation of the logarithmic RMS detector has to be solved for a different
input signal. The differential equation of the logarithmic output RMS detector was calculated in
reference [6] as follows;

A rms()
V’m(/) (jeXp( I' ) 2. I’uns(’)
i =TT o texp (22)

The output voltage is calculated from equation (19) as follows:

( k ,/ H}IS(/)

()ul(t) - m(t) eXp (23)

Substituting equation (23) into equation (22) and rearranging terms, the RMS detector
differential equation can be written as:
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P rms(l)
V%Vl; ) ex (Zk Vnm(’)) exP( ” T + ex (2 (k1) me(t)) 24)

Notice that the following identities:

aexp( [rm:(l)
o

(2 Vems@) | 02V ms(0))

1
Vr or (25)

2+ 1)V s (0)
dex ( Y ) k+1 (2 ke Vmw(t) 2‘Vrms(1) a(z'Vrms(f))
o =y " €Xp "CXP\TV )T a6

Using the above identities, equation (24) can be written as follows:

201V pms(6)
V;z(t) T aexp( Y ) + (2 1)V s (1)
N7 ot 289 Vr )

In order to solve the above differential equation, let’s make the following notations:

1) = exp(M@)

v(e) =4

(2%

This differential equation is solved the same way as the differential equation for the linear
output RMS detector. Substituting z(t) in equation (27) and multiplying both sides by exp(z(t)).
the differential equation can be written as follows:

22(0) - exp(0)] = &L L2 - exp(v(1)) )

Both sides of equation (29) are integrated and substituting z(t) from (28) the following
equation is obtained:

ex (2(k+l)V,,m(I) =[f%—l V,,,(z) ((/m);) dt+c] exp(—(k+l)’)

(30)
where ¢ is a constant without units.
Equation (30) is solved for Vn.(t) as follows:
- V/’ k+l ___ (k+l)/)



The transfer function of the feedback compressor is calculated by substituting equation (31)
into equation (19) as follows:

‘.
Vou ([) k+1 Vm(’) (/('H) ! 2:(k+1) ket
V) = [I T exp() - dt + ] - exp(£L) s2)

Notice that in the case of the feedback compressor the log integrator time constant is divided
by the factor (k+1). For k = 1, the transfer function of the log-domain feedback compressor is
identical to the transfer function of the linear-domain feedback compressor, equation (16).

3 Compression ratio

The compression ratio is defined as the rate of change at the input of the compressor divided to
the rate of change at the output of the compressor, in decibels. For instance, a 10 dB change at
the input of a 2:1 compressor translates into a 5 dB change at the output. This is illustrated in
Fig. 3, a plot of the compressor output in decibels (dB) versus the compressor input, also in dB.
The mathematical definition of the compression ration is:

C _ (){J’B(V,,,(’)) ~ AdB(Vin(/))
"= 0BV ou(1)) = DBV (1)) G3)

The infinitesimal difference and the finite difference are equal if the compression ratio is not a
function of the input voltage, e.g., 2:1, 1:3. In some audio applications the compressor is on
above a threshold. The threshold can be “hard knee” or “soft knee” as shown in Fig. 3. In the
case of a “soft knee” compressor, the last two terms of equation (33) are not equal and only the
infinitesimal difference should be used.

3.1 Log-Domain Compressor
3.1.1 Feedforward

Let’s assume that the input voltage has the following expression:

Vin(t) = Vp f(t) (34)

where V), is the peak level and f(t) is the time dependent part of the input signal.

The transfer function of the feedforward compressor, equation (21), can be simplified as
follows:

/'aul Vm()
%=[exp(—%)-0% = exp($) - dt)+c xp(-H)] s

Notice that constant ¢ has a contribution only to transient response. If the time is greater than
three time constants, the contribution of the second summation term in parenthesis is minimal.
Therefore, fort = x | the output voltage is calculated as follows:

wl:v



m]>.~

Vo) = Vir®) - [exp(=)- (13- 52 expd)-dt) | )

Substituting (34) in the above equation of the feedforward compressor, equation (36)
becomes:

Nl?r

exp( -7 ([ U exp$)ai) |
Vi@ 37

Vou(t) = Vi, (1) -

The output voltage in decibels is:

P _k
f i *;-2'— sexp(¥ )dt :
AB(V () = (1 = k) - dB(Vin(2)) + dB -

ﬁ(l)~exp(%) (38)

The compression ratio for a feedforward compressor can be calculated from the above
equation as follows:

C adB(Vm(t)) — 1

" 0BV ) T 1k (39

or

1
k=1-¢ (40)

The following table summarizes the compressor functionality as a function of gain factor k.



Table 1

Gain factor k —WCompra’ion ratio Function

jI<k<o -0 <Cr<0 Compression ratio is negative:
i output decreases as the input
increases. The compressor sounds
like playing a tape backwards.

k=1 Cr=ow Infinite compression: output is set
to reference level independent of
input level. Perfect automatic gain

control.
0<k<l 1<Cr<ow Compressor
k=0 Cr=1 No compression
—0 <k <0 0<Cr<1 Expander: output change is greater

than the input change

3.1.2 Feedback

The transfer function of the feedback compressor, equation (32) can be simplified as follows:

"
) 2 (k1)1 T2

) j (IH;I). 1132 'eXP(T i

14 oul(’) _ I'r

(k+1 )-l)
Viu(’) - ((/H‘l)'lj
exp T

+cC- exp(—_}_— “n
As in the case of the feedforward compressor, constant ¢ has a contribution only during
transient response. Notice that the RMS detector time constant is divided by a factor of k + 1. If
time is greater than three times the equivalent time constant T , the contribution of the second
summation term in parenthesis is minimal. Therefore, fort = oo, the output voltage is calculated
as follows:

T

k
oy 120 (k1)1 T2
j‘ (k+1) i ‘CXP[T .t

17

V()ul(t) = Vin(t) : 1)1 (42)
exp{ 7

T

Substituting the definition of the input signal, equation (34), in the above equation, the output
voltage becomes:
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k
2 (k+1)-t T2kD
(kt” ng) exp[_T J.dl

1
Vout(t) = V,',;rl (t) .

20 exp[(kﬂ) l] (43)
The output voltage is expressed in decibels as follows:
dB(YV (1)) = 7 - dB(V(0) +
@.%”.exp(@i}d, T (44)
+dB 0 exp[ (et 1)- tJ

The compression ratio for a feedback compressor can be calculated from the above equation as
follows:

C,- — adB( Vin(’))

2BVt = K+ 1 (45)

or
k=C,-1 (46)
The following table summarizes the compressor functionality as a function of gain factor k.

Table 2

Gain factor k Compression ratio Function

0<k<o I<Cr<w Compressor: infinite compression is
not possible because it requires
infinite gain

k=0 Cr=1 No compression

-1 <k<0 0<Cr<1 Expander: output change is greater
than the input change

k=-1 Cr=0 Infinite expander; unstable setting

-0 <k <-1 -0 <Cr<0 Compression ratio is negative:

output decreases as the input
increases. The compressor sounds
like playing a tape backwards.




3.2 Linear-Domain Compression Ratio

In log-domain compressor, the compression ratio is determined by the multiplier factor k. The
question is, how can the compression ratio be controlled in the context of an linear-domain
compressor ?

Let’s define the following notations:

Ve, - output of the RMS detector in a linear-domain compressor

Vi - output of the RMS detector in a log-domain compressor
3.2.1 Feedforward

In the previous section it was shown that the transfer function of the compressor based on
linear detector and linear VCA matches the transfer function of the compressor based on
logarithmic detector and exponential VCA, for k = 1. If both transfer functions match for any

value k, then the gain control function, f{Gc), of the linearly-controlled VCA has a different form.
Let’s equate both transfer functions (4) and (21) :

[SYEN

V2 (1)

fl(VrmSLL(t)) = f% : L'2' ) exp(%) ~dt+c * eXP(%) 47
Vi “47

where f) is the new gain control function of the linear VCA.

Substituting the linear RMS detector output (3) into equation (47), function f, has the
following form:

k
f 1 ( VrmsLL(t )) = ( 14 rnllsLL ) “8)

Thus, the compression ratio transformation, from the log-domain feedforward compressor to
the linear-domain feedforward compressor, is implemented by raising the VCA control voltage to
the power of k.

3.2.2 Feedback

It is necessary to check if raising the linear VCA control port to the power k is a solution for
the feedback configuration, also. Unfortunately, the transfer functions of the linear-domain and
the log-domain feedback compressors can not be equated like in case of the feedforward
compressor. The problem is that the factor k is associated with the log filter time constant as
shown in equation (32). The solution is to solve the transfer function of the linear-domain
feedback compressor using f1(Gce), given by (48), instead of f{Gc) as defined in (2). So, the
output voltage is calculated from equation (4) and (48) as follows:

Vlu(’)
Voult) = 7205 (49)



Substituting equation (49) into equation (6) and applying the property of the derivative
function, as shown in (9), the differential equation of the feedback compressor becomes:
%n(r]sc“ (’) k+1 (/(+l )(t) Vm(t) k+l

T

T a (50)

The above equation is solved the same way as equation (10). The solution is:

Vm(’) k 7(k+)
Vrms(t)z[fk_;—l—' (( H)r) dt + C] ! exp( 21>(51)

Substituting the RMS detector output level, equation (51), into equation (49) the transfer
function is calculated as follows:

VDH (’) k+1 Vm(,) (IH‘] ) { 2 (k+|)

Equation (52) matches the transfer function of the log-domain feedback compressor,
equation (32).

The compression ratio transformation implemented by raising the VCA control voltage to the
power of k, works for both feedforward and feedback linear-domain compressors.

4 Performance

So far all the results are based on a generic time varying input signal. It was demonstrated that
both compressor topologies are identical. Thus, the performance analysis is independent of the
RMS detector or VCA. In order to quantify the performance of each compressor topology, the
input signal needs to be defined more specific, e.g., sine, square, etc. Let’s specify the input
voltage as:

Via(t) = V4 - cos(wt) (53)
where V, is the peak level and w is the signal frequency in radians per second.
4.1 Feedforward

Let’s substitute the definition of the input signal (53) into the transfer function of a
feedforward compressor, equation (21):

w[>~

Vaul(f) — [
V() = L2013

where:

E(t) = [ exp(£) - dt + | cosQQurt) - exp(¥) - dt 55)

E(t)+c} -exp( ) (54)



and the following trigonometric property is used:

1 2
cos*(wt) = Losz(—w’l (56)

The first integral in E(t) is solved as follows.
fexp($)-dt =1 exp(¥) 57
The second integral in E(t) is solved as follows:
[ cos2wr) - exp(£) - dt = - exp(£) - cos(2wt) +
+2wt- f exp(£) - sinQQwt) - dt = 1 - exp(£) - cosQuwt) +
+ 2wt [ exp(£) - sinQwr) - 2wt - | cosuwr) - exp(£) - dt ]
(58)

Notice that the last term of equation (58) is the original integral. So, the above equation can
be solved for the second integral term of E(t) as follows:

cosQw)+2wr-sin(2ewt)

[ cosQwt) - exp(£) - dt = 7 exp($) -

1+Q2awr)? 9
Substituting the integral results (57) and (59) into equation (55). E(t) is evaluated as follows:
!
E@) =1 -exp(z) - Glwt, 1) (60)

where G(ot, 1) is defined as follows:

_ cos(2wn)+2wt-sin(2wr)
Glot, 1) =1+ "= ©1)

Finally, substituting equations (40) and (60) into (54) the transfer function of the feedforward
compressor is expressed as a function of input signal and compression ratio as follows:

-Cr
-

R 2
Vourlt) ( J2 j !
V,,,(I) = V;’z ‘ G(a)t, T) + C:* 6Xp(—7) (62)

The transfer function of a compressor is basically its gain function. The transfer function in
equation (62) has a few terms, each with its own significance. The first term in parenthesis is the
steady state solution: ripple and dc. The ripple is given by G(wt,t)} as shown in (61). The ripple is
the residual ac left after the first order low pass filter in the RMS detector. It modulates the
compressor gain and it is a major source of distortion. The dc term is the compressor ideal gain if



the RMS detector low pass filter would have been ideal. The second summation term in the
parenthesis decays with time and it has a significant contribution only during transient response.

4.1.1 Ideal gain transfer function
The ideal gain transfer function is the steady state solution of transfer function (62) in the

presence of an RMS detector with ideal integrator, or no ripple. In this case, the transfer function
(62) can be written as:

1-Cr
(V_A)z ES
Vout(t) — ﬁ
Vin(’) - Vg (63)

The transfer function was rearranged to show that the compressor gain is proportional to the
RMS value of the input signal. Indeed, the RMS value of a sine is the its peak value divided by
the square root of two. For commonly used time constants, in the range of tens of milliseconds,
this formula is quite safe to use when calculating the compressor gain. In this case, the error
caused by ripple is small. For instance, for a time constant of 35 ms, the peak value of G(wt,T) at
100 Hz is about 1.02 .

4.1.2 Ripple and Harmonic Distortion
As mentioned before, the ripple modulates the compressor gain causing distortion.

Substituting equations (53) and (61) into equation (62), the output voltage steady state solution is
calculated as follows:
7

Vout) = V4 - cos(wi) V, (1 +cos(Rwt— @) - cosg) (64)
where:
tan g = 2wt (65)

The Taylor series of a binomial is:

(1+x)' =1+n-x+ "’('2',“1) cx?+ "'("_13)!'(”_2) .

3
X7+ ... (66)

If x is small, a good approximation is to consider only first two terms of the Taylor series. In
this case, this can be done if cos(¢) is small. The greatest value of cos(o) is at low frequencies
and/or small time constants. For commonly used time constants this approximation can be made.
For instance, for a time constant of 35 ms, cos(p) at 20 Hz is about 0.1 and less for higher
frequencies . Thus, taking into account Taylor series (66), the output voltage can be
approximated as follows:



. 1-Cy

AN

Vo) =Va+| 5| - coslewr)-(1+ St - cos ¢ - cosQuit — )

67
Recall from trigonometry the following property of cosine function:
cos(a+b)+cos(a—b)
cosa-cosh=——75——- (68)

The above trigonometric property is applied to equation (67) as follows:
1-Cp
AN

V(mt(t) = VA * '%’ :

. (cos(a)t) + % - cos ¢+ (cos(3wt — @) + cos(wt - (p)))
(69)

The spectra of the output voltage contains the fundamental and the third harmonic of the
fundamental. The total harmonic distortion is the square root of the sum of the square of all
harmonics divided to the square of the fundamental. If all the harmonics are normalized to the
amplitude of the fundamental, then the total harmonic distortion is the square root of the sum of
the square of all harmonics. In this case, only the third harmonic exists and the total harmonic
distortion is equal to the normalized third harmonic amplitude. This is because only the first term
of the Taylor series is considered. If more terms are taken into account then the spectra of the
output signal is a sum of odd harmonics. This can be demonstrated by noticing that the input
signal, cos(ot), multiplies a cos"(2mt) term (see equation 64). This can be written as follows:

COS((UZ) . COS'I(Za)l‘) = COS((,Ot) 2 A * COS(m ] 2(1)!) -
=Z am - cos(wt) - cos(m - 2wt) =

=y 92”—’ (cos(m+1)-wt)+cos(2m—-1)-wt))

m
(70)
where a,, are a series of real coefficients.

Thus, the result of the multiplication is a sum of odd harmonics. Notice another trigonometric
property of the cosine function:
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cos(wt) — b - cos(wt—p) = J1+b*=2-b-cosg - coslwt+ 1)

(71
where @ is defined as:
besin g

tang, = I-b-cosp (72)

Applying the cosine property (71) into equation (69) and normalizing the spectra, the
frequency content of the output voltage is:

Ot
Voulwt) = cos(wt+¢,) — ( - cos(3wt — ) (73

[ o

+2wr)?

where @, is defined as:

=1
"4L(T.(2wr)

tan g = 5o — 9
4.(7r +(2(DT)~

The distortion of the feedforward compressor is equal to the coefficient of the third harmonic
as follows:

o1
4.0,

THD gy = (75)

3.04+1%2
"‘WJ +2wr)?

Equation (75) is plotted in Fig. 4, solid curve, for 20:1 compression ratio. It’s interesting to
notice that the distortion at low frequencies is flat. At high frequencies, distortion decreases with
frequency at a rate of 6 dB/octave. In a real compressor, the distortion meter measures THD+N,
or total harmonic distortion plus noise. Therefore, when the harmonic distortion is lower than the
noise floor, the distortion curve is flat also, this time due to the noise of the compressor. Since
the distortion is flat and then decreases at a rate of 6 dB/octave it has a “-3dB” point at;

1 3.(+1
WFF 303 = 2.7 * "4, (76)

For a 35 ms time constant, this point moves from 1.7 Hz at infinite compression, to 2 Hz at 2'1
compression and to 2.3 Hz at no compression. So, the “-3dB” corner frequency is around 2 Hz,
Below the corner frequency, the distortion predicted by formula (75) is 33% at infinite
compression and 14% at 2:1 compression. At 1 kHz, the distortion drops to 0.07% at infinite
compression and about 0.03% at 2:1 compression.



Figure 5 shows the FFT of a 500 Hz output signal given by equation (64), for an RMS
detector time constant T of 350 ps and infinite compression. The input signal is a 500 Hz cosine.
Notice that only the third harmonic is in the output signal spectra. The distortion calculated from
FFT is 11 %. The same distortion calculated by the formula (75) is 10.7 % . Lowering the RMS
detector time constant to T = 100 pus, more odd terms show up in the FFT, as shown in figure 6.
The distortion calculated from the FFT is 31.7 % and since formula (75) takes into account only
the third harmonic it predicts 25.6 %. Notice that no even harmonics are present in the output
signal spectra, as demonstrated in equation (70).

4.1.3 Transient response

Transient behavior occurs when the input signal changes from one level to another. Let’s
define the following input signals around t = 0:

to- : Vi(t) =V, - cos(wt)

an
tor : Vinlt) = Vg - cos(wt)

where t,. is the time just before t = 0 and t,. is the time just after t = 0.

The compressor gain just before t = 0 is the steady state solution of the transfer function for
the input level at t,.:

o_[(&)
Voult) _ J2
Vin(’) - V;?' * G(Cl)t, T)

(78)

When the input signal changes at t = 0, the compressor takes a finite time to react and its gain
is still the one at t,. . Thus, the gain calculated in equation (78) is equated with the transfer
function of the feedforward compressor, equation (62), for the input signal as defined for to. :

1Cr 1-Cr
La’ 20 [y 3Cr
# - G(w0,7) = L;—l— - G(w0,7) +¢ 79

Equation (79) is solved for constant c as follows:

2 2
((ew0,1) 1 Vi 1 Glw0,7)
€= ((—%—) _(T{)]=E' v Va=VE) @

Constant ¢ is proportional to the difference between the RMS values of the signal before t = 0
and the signal after t = 0. Factor G(w0, t) is added to match the phase of the ripple before and



after t = 0. Substituting constant ¢ in the transfer function of the feedforward compressor,
equation (62), and ignoring the effect of the ripple, the transient transfer functions becomes:

1-Cr
2.0

Vaut(t) _ _l_ VB 1 . (VA B) ( )
Va® T2 R 81
The above transfer function is the same for attack and release time. A plot of attack and
release transfer function is shown in Fig. 7 . The shape of the attack and release envelope is the
shape of'a decaying and raising exponential function with a time constant T .

4.2 Feedback
The transfer function of the feedback compressor is determined in the same manner as the

feedforward compressor. The input signal definition (53) is substituted into equation (32) as
follows:

k
Vou (t) (k+1) (R ) V T2k+)) %
= | zep DD+ -exp(35) (82)

where D(t) has the following form:

D(t) = [exp( - (k+ 1)) - dt+ [ cosQQuwt) - exp(s - (k+ 1)) - dt
(83)

Solving the integrals in equation (83), D(t) is written as follows:
D(t) = Giy - explz - (k+ 1)) - H(owt, 7) 4

where H(wt, t) is defined as follows:

cos(2w)+ 2w -sin(2wf)
9
142075 )"

Substituting equation (46) and equation (84) into equation (82), the transfer function of the
feedback compressor can be expressed as a function of the input signal and compression ratio as
follows:

VA 2
Voul(l) ( 2 )
V.0 = H(wt,T)+c- exp[ ((’)j (86)

H(wt, 7)) =1 (85)

1-Cy
2Cy

The same notes that applied to the feedforward compressor are correct for the feedback
configuration. The major difference is that the time constant is divided by the compression ratio.



4.2.1 Ideal transfer function

The ideal transfer function of the feedback compressor is the steady state solution of the
transfer function (86) with an ideal low pass filter in the RMS detector, or no ripple:

e\
Vaut(’) — [ ﬁ J
Vi) — | V? (87)

The feedback compressor gain is proportional to the RMS value of the input signal. If the
equivalent time constant, that is the RMS detector time constant divided by the compression ratio,
is the range of tens of milliseconds, the above formula can be safely used to calculated the gain of
the feedback compressor.

4.2.2 Ripple and Harmonic Distortion

As in the case of the feedforward compressor, the ripple factor H(wt, t) modulates the
feedback compressor gain and causes distortion. Substituting the definition of the input signal
(53) and ripple (85) into the transfer function (86), the output voltage is calculated as follows:

1-Cy

( ¥y JE 20y

J; -(1+cosQut—0)-cosf)| s

V{mt(t) = VA . COS((,Ot)

where:

— £
tan 0 = 2w (89)
Equation (88) can be expanded into a Taylor series using the binomial series (66):

1-Cy

Va "¢

Vol )= Va+| 5| ~cos(or) (1 +55 - cosf- cosQut - 6))

(90)

Using the property of the cosine function (68), the above equation is rewritten as follows:
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1-Cp
VA Cp

Vout(f) = VA ’ J{% ’

- (cos(wt) + 4= - cos 0+ (cos(3wr — 6) + cos(wt — 0)))
on

The spectra of the output voltage contains the fundamental and the third harmonic. The more
terms of Taylor series are considered, the more odd harmonics are added to the sum. For
commonly used time constants, in the tens of milliseconds range, the third harmonic is 2 good
approximation. Applying the cosine property (71) to equation (91) and normalizing the spectra to
the fundamental, the frequency content of the output voltage follows:

(-1
4.C,

() o

Veou(wt) = cos(wt + 8 ) —

. COS(3(l)t - 8) (92)

where 0, is defined as:

-1
e, (207%)

3. ( 1
+ +( 207, )

The feedback compressor, as well as the feedforward compressor, has a built-in inherent phase
shift or delay, 8. The delay is zero at dc, or if there is no compression, C, = 1, or if the time
constant is zero. The distortion of the feedback compressor is equal to the coefficient of the third
harmonic as follows:

tan@, = (93)

THDgp =
B \/(3( +1J (i ) (94)

Equation (94) is plotted in Fig. 4, dashed curve, for 20:] compression ratio. The distortion at
low frequencies is also flat. At high frequencies, distortion decreases with frequency at a rate of
6 dB/octave. The distortion “-3dB” corner frequency for the feedback compressor is:

G 30
WEB 3 = 27 * 4

.y

(95)
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For similar RMS detector time constant, the feedback compressor “-3dB” frequency corner is
multiplied by the compression ratio. This is especially important at high compression ratios and
because the higher distortion plateau is extended to higher frequencies. For instance, for a 35 ms
time constant, at a compression ratio of 20:1 the corner frequency for the feedforward
compressor is 1.7 Hz compared to 35 Hz for the feedback configuration. However, if the RMS
detector time constant is adjusted by multiplying it by the compression ratio, then there is no
difference in performance between feedforward and feedback compressor.

4.2.3 Transient response

The input signals for the transient response are defined in (77). The feedback compressor gain
right before the input signal transition is:

1-Cr

0) [2)2 -
Voulf 22
Vl'll(’) = Vi‘? ) H(wt’ T) (96)

When the input signal changes in level at t = 0, the compressor gain requires finite time to
change. Therefore, the gain at t.. equals the gain at t,.:

() # ey
__/;7_ - H(0, 7) = —%— - H(w0,7)+ ¢ ©7)

The above equation is solved for constant ¢ as follows:

H(w0,7) Y 2 Vi z _ Hw0,7)
€= Vi .[(v’i) _(v’ijj_ 2V3 (Vi—V%’) (98)

The ripple value at t = 0, H(ot, 1), is only necessary to match the phase of ripple at the
transition.

Substituting constant ¢ in equation (86) and neglecting the ripple, the transient transfer
function has the following form:

1

Yould _ k2 | V5, i) | exp| ——~ 2
Vilty T RI 2.V3 212 p ((L) ©9)

-

The transient response of the feedback compressor is similar to the feedforward compressor
with the difference of the RMS detector time constant is divided by the compressor ratio. The
same attack and release curves shown in Fig. 7. can be obtained by setting the RMS detector time
constant to T =35 ms * Cr. In this case, the compression ratio is 20:1 and the RMS time constant
is T =700 ms.
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The difference between the transient response of the feedforward (solid curve) and feedback
(dashed curve) compressors is shown in Fig. 8 . The RMS time constant and compression ratio
are equal, T =35 ms and Cr = 20, respectively. Notice that the feedback compressor is 20 times
faster than the feedforward compressor.

4.3 Other Factors that Influence Performance

There are second order effects that could influence the compressor performance. For instance,
it was shown that the total harmonic distortion of a compressor, due to detector ripple, is a sum
of odd harmonics, only. In reality, a non-ideal VCA can contribute even harmonics to the spectra.
A not quite symmetrical rectifier in the RMS detector adds unwanted harmonics to the
compressor spectra, as well. I[n DSP implementations the ADCs and DACs, add harmonics of
their own. Ultimately, the noise of the devices, VCA, RMS detector operational amplifiers and
resistors add to the distortion plus noise number and limit the dynamic range of the detector or
COmpressor.

The transient response can be also slightly different than the one predicted by the theory. The
timing capacitors have finite equivalent series resistance, ESR, anywhere from fractions of ohm to
a few ohms. In order to account for ESR, the equivalent schematics shown in figures x and vy,
change by adding a resistor in series with the timing capacitor. The mathematical model is very
complex and it is ot shown in this paper. The result is a faster RMS detector. Another effect of
the ESR is ripple increase and eventually higher distortion,

The integrator of the logarithmic output RMS detector may be based on a log filter [7]. The
structure of the log filter is similar to the linear R-C model but the resistor is replaced by a diode.
The diode exhibits dynamic conductance that is a function of the current flowing through it.
More current translates into increased conductance. A resistor in series with the diode limits the
maximum conductance and substantially complicates the mathematical model of the RMS
detector. The result is an RMS detector with slower attack time. The series resistor is a
“natural” component since all diodes have finite series resistor. Also, improper layout design of
an RMS detector IC metal mask could add unnecessary series resistor.

A linear based compressor can suffer from limitation such as current and voltage availability
and ultimately power dissipation. If the filter in the linear RMS detector is made of a 3.5 kQ
resistor and 10 uF capacitor (35 ms time constant), the peak current could be as high as 86 mA
when 303 V is applied to the resistor (corresponds to peak +24 dBu). This translates to 24 W
peak power required from the power supply.

The logarithmic RMS detector can suffer from current limitations as well. The current flowing
through the logarithmic filter diode is proportional to the square of the input current {7]. A
change of +20 dB in the input voltage can translate into a +40 dB current jump in the log filter
diode. If the reference level current is set to 8.5 uA and the input resistor is 10 kQ [10], the
maximum peak current for +24 dBu input signal is 3 mA. A proper RMS detector design can
provide that much current. However, if the logarithmic RMS detector input resistor has a lower
value, then current clipping can occur. The power dissipation in this case is not an issue, since the
maximum voltages are around two diode drops or about 1.3 V.

23



§ Compressor with Threshold

In many applications the compressor is implemented with threshold. The input signal is
compressed above threshold, only. Below threshold the gain of the VCA is one. The threshold
circuit is usually part of the k multiplier block as shown in Fig. 1 and Fig. 2 . The transfer
function of a compressor with threshold is shown in Fig. 3 . The “soft knee” gives the
compressor a nice sonic transition.

In Fig. 9 is plotted the transient response of an above threshold compressor (for clarity, only
the signal envelope is shown). The threshold is set to 1 Vpeak, dash-dot line. The RMS detector
output is shown in the lower plot of Fig. 9 . Only the signal above the threshold line is applied to
the VCA. If the RMS output is below threshold, the VCA gain is one.

Before t = 0, the input signal is below threshold and the VCA gain is one. Between 0 ms and
150 ms the input signal is 6 dB above the threshold. The RMS detector output increases but it
does not change the VCA gain until it reaches the threshold. Thus, until the RMS detector output
reaches the threshold, the VCA gain is one and the compressor puts out the whole input signal.
This is an important difference between the compressor with and without threshold. In an
amplifier and/or driver protection application, the duration of time the protected device has full
power applied is very important and it can determine the compressor time constant. Between 150
ms and 400 ms, the signal drops from 6 dB to 3 dB above threshold. The compressor output is
similar to the one shown in Fig. 8 . At 400 ms, the input signal drops to 6 dB below threshold
and the RMS detector output slowly decreases. Although the input signal is below threshold, the
VCA gain is modulated by the RMS detector, and the output signal is compressed until the RMS
detector output reaches the threshold.

6 Conclusion

At the beginning of the paper, it was demonstrated that the compressor based on logarithmic
output RMS detector - exponentially controlled VCA and the one based on linear output RMS
detector - linearly controlled VCA are identical. Therefore, all compressor implementations,
hardware or software. share similar performance.

The following table summarizes the performance difference between feedforward and feedback
compressor topologies.
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Table 3

Feedforward Feedback Notes ]
THD at low , . The distortion is equal at
; C—1 -1 :
frequencies and/or L - low frequencies.
fast time constant 3Crtl 3:Crl
THD at higher , , The feedback compressor
frequencies or slow —-(’;1- Ol THD is Cr times the
time constant 8:Crart 8wt feedforward THD.
The feedback “-3 dB”
THD “-3dB” 1 3o+l ¢, 30+ point is Cr times the
frequency 27 "4, 27 AC, feedforward compressor
“-3 dB” point.
For equal RMS detector
time  constants, the
Time constant T L feedback compressor
Cr time constant is divided
Cr times.

A few conclusions can be drawn from the above table. The performance of the feedback
compressor is directly affected by the compression ratio. For similar transient response, the RMS
detector time constant in the feedback compressor needs to be multiplied by the compression
ratio. This is easy in fixed compression ratio applications. In feedback compressors with
adjustable compression ratio the circuit necessary to keep the same time constant is quite
complex. The distortion of the feedback compressor is also multiplied by the compression ratio.
Thus, a feedforward configuration is more appropriate for a compressor.

Theoretically, infinite compression ratio is impossible in feedback compressors. However, a
compression ratio of 20 or more approximates an infinite compressor The major drawback is
that the distortion at 1 kHz is 1.4 % compared to only 0.07 % for the feedforward configuration.
In order to maintain the same performance, the RMS detector timing capacitor has to be increased
20 times. Thus, the capacitor value can increase to a couple hundred pF. The capacitor is more
expensive and requires more PCB area.

In a feedback compressor topology, the dynamic range at the input of the RMS detector is
smaller than the dynamic range at the input of the RMS detector in the feedforward compressor
topology. The reason is that the output voltage is already compressed. Thus, the feedback
compressor is more appropriate in applications that require a large dynamic range that the RMS
detector can not handle.

The feedback configuration is suitable for expander applications. The compressor becomes an
expander when output level changes are greater than input level changes. In this case the
compression ratio is between zero and one. The distortion performance is better than the
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feedforward expander. This can be explained by the fact that the gain factor k is smaller for
feedback configuration compared to feedforward. Therefore, there is less ripple passed from the
RMS detector to the VCA and as a consequence less distortion. The timing capacitor is
multiplied by 1/Cr factor, also. Thus, smaller timing capacitor is needed. Since RMS detector
time constant is divided by the compression, the same disadvantage remains in applications where
the compression ratio is a variable.
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Figure 1. Feedforward compressor topology.
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Figure 2. Feedback compressor topology.
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Figure 4. THD versus frequency. Solid curve feedforward compressor and dashed curve
feedback compressor. Compression ratio is 20, RMS detector time constant 35 ms.
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Figure 5. FFT of the feedforward compressor output. RMS detector time constant 350 s
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Figure 6. FFT of the feedforward compressor output. RMS detector time constant 100 ps
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Figure 7. Feedforward compressor: upper plot, attack and release gain modulation, lower

plot, VCA gain. RMS detector time constant 35 ms, reference level 1 Vpeak, signal

frequency 100 Hz, compression ratio 20:1, signal level: 6 dB above reference level

during attack, 6 dB below reference level during release.
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Attack and Release Envelope
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Figure 8. Feedforward, solid curve, and feedback, dashed curve; compressor. Upper plot:
attack and release gain modulation. Lower plot: VCA gain. RMS detector time
constant 35 ms, reference level | Vpeak, signal frequency 100 Hz, compression ratio
20:1. Level: 6 dB above reference level during attack, 6 dB below reference level
during release.
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Figure 9. Feedforward compressor with threshold. Upper plot: attack and release gain
modulation, solid curve, input signal peak amplitude, dotted curve, threshold,
dash-dot curve. Lower plot: linear RMS detector output, solid curve, threshold,
dashed line. Threshold set to | Vpeak. RMS detector time constant 35 ms,
compression ratio 20:1. Input signal level: 6 dB below threshold (-100 ms, 0 ms),
6 dB above threshold (0 ms, 150 ms), 3 dB above threshold (150 ms, 400 ms) and
6 dB below threshold (400 ms, 500 ms).
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